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INTRODUCTI ON

The focus of this dissertation is on numerical modeling of stable

acoustic cavitation. Neppiras [11 defines stable acoustic cavitation as

the oscillation of cavities or bubbles about some equilibrium size. In

general the oscillations need not be linear, but may vary with time in a

very complex manner. The adjective stable implies that the bubble

exists for many cycles without breaking up or dissolving. On the other

hand, a transient cavitation event is one which usually exists for one

cycle or less. The bubble grows to several times its equilibrium size

and then collapses violently breaking into many smaller bubbles. We

will only deal with stable cavitation here.

Before pressing onward with the latest acoustic cavitation

theories, let us briefly examine the short history of this field of

Physics. Interest in cavitation dates back to Besant [21 in 1859.

However, there was no significant theoretical work in this field until

that of Rayleigh [3] in 1917. This paper by Rayleigh described the

collapse of a spherical cavity. Of course Lord Rayleigh is most famous

for his treatise The Theory of Sound which he started writing while on

vacation in Egypt in 1872. This monumental work took five years to

reach the press and it is a credit to Rayleigh's abilities that it is

still considered today as the foundation of physical acoustics.

Between Rayleigh's paper in 1917 and the late 19401s, all
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theoretical work in cavitation was concerned with hydrodynamically-

generated cavitation, usually by propellers on ships. In 1949 Blake [4]

published the first systematic study on acoustic cavitation. Shortly

after this publication, the classic papers by Plesset [5], Neppiras and

Noltingk [6,7], and Poritsky [8] appeared that significantly advanced

the theory. It was about this time that many groups began working on

the problem of acoustic cavitation. Plesset added variable pressure and

surface tension terms to the theory of Rayleigh and for his contribution

the resulting equation with a damping term added by Poritsky is called

the Rayleigh-Plesset equation. This equation is derived and discussed

in chapter 1.

The basic problem of acoustic cavitation is to find the pressure

and velocity fields of the two phase medium consisting of a bubble or

cavity and a surrounding fluid which theoretically extends to infinity.

Recent advances in ultrasonic instruments used for medical purposes have

made a knowledge of the internal temperature of an oscillating bubble

important as well. High temperatures in the interior of the bubble can

produce free radicals which could be dangerous to biological systems

[9]. In practice the bubble's radius as a function of time is also of

interest as well. Although the new theoretical model is very complex

and requires a lot of computer time for its solution, all of the

quantities mentioned above can be obtained from its solution.

In this study numerical methods are used extensively to solve the

basic equations of acoustic cavitation for the case of a spherically

. . . . .- -- - -. . --- '.,m . , .",, ,.-.,,mmm~ma wl a ' and.Wm m '- m " " " " " - " "- ". " ' ': ,' ' ,
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oscillating bubble in which the internal pressure is defined by a method

suggested by Prosperetti [10]. A thorough comparison with previous

results will be made to see just what parameter values necessitate the

use of this more complex model. In chapter 4 it will be shown that this

new theory leads to a different type of coupling between the liquid and

gas phases through the use of "Feigenbaum trees" [11,12].

The most elementary model of acoustic cavitation considered here is

the Rayleigh-Plesset equation, derived by Plesset [51 with the viscous

damping term added by Poritsky [8]. Extensive numerical investigations

were carried out for this equation by Noltingk and Neppiras [6,7] and

later by Flynn [13,14]. Since that time several approximate analytical

solutions to the Rayleigh-Plesset equation have been derived, including

a solution to second order in the asymptotic expansion by Prosperetti

[15). These solutions were thought to be adequate until recent

experimental data showed a large deviation between theory and experiment

for driving frequencies in the vicinity of a harmonic of the resonance

frequency of the bubble. It will be shown that the new theory is closer

to experimental data in these sensitive frequency ranges and thus is a

better model for the thermal damping in the bubble.

The first chapter contains a brief derivation of some of the basic

equations in cavitation. Included in this section are the well-known

Rayleigh equation and the Rayleigh-Plesset equation. The more advanced

equations for radial bubble oscillations are discussed as well and

relationships between them are pointed out. After establishing the

. . . **N*.~*.**i
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heating term is given by Prosperetti [8] as

( dT ~ Lfp P v (KVT),

pCg + IT PI - (40)

where T is the internal temperature, c the specific heat of the gas at
P

constant pressure, and K is the thermal conductivity of the gas.

Multiplication of equation (38) by c T and adding it to equation (40)P

results in

d cPTj + 1 t 7 . (KVT). (41)

Using the ideal gas assumption it is easy to show that

Pc T =---P and T I = -i. (42)
p y-l INpj

Sustituting equations (42) and (37) into (41) results in

yP T * + ( U - YP = 0. (43)

Because of the previously assumed spherical symmetry, one can multiply

both sides of equation (43) by dV and integrate. Applying the

divergence theorem to the second term yields the following

f[-)4- dV + U - KVT dA = 0. (44)

Carrying out the integration yields

4rr s + f the gasvelocit 0. (45)
3yP 7P 9r

Now, solving for the gas velocity U gives
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+ ULU" + = T(35)

where p, P, U, and T denote the density, pressure, radial velocity, and

viscous stress tensor of the gas in the bubble. r = 0 corresponds to

the center of the bubble and r = R corresponds to the wall of the bubble

of radius R. The boundary conditions for the velocity are

U(r=0,t) = 0 and U(r=R,t) = dR/dt. (36)

From the assumption of spherically symmetric oscillations and

radial gas velocities, it is clear that the internal ptessure Pi is only

a function of the radial coordinate r and time t. In section C of this

chapter we will show that order of magnitude estimates reveal that we

can replace equation (35) by

P = Pi (t) or Pi = Pi (R) (37)

since R - R(t).

Next, the continuity equation is considered ( see for example

Batchler 1231 )

+ p7 . U = 0

where

D _ U (39)- = - + UL "
Dt ot 9r

Finally, the conservation of energy equation without the viscous
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B. An exact formulation for the internal pressure

The need for a more accurate expression for the internal pressure

of a bubble as a function of both the bubble radius and time led

ILosperetti [101 to a direct approach using the conservation equations

for the interior of a bubble. The derivations that follow are along the

lines given by Prosperetti.

Certain assumptions about the geometry of the bubble oscillations

and the nature of the gases and liquids will be made from the start of

the derivation. These assumptions set some limitations on the theory

that follows. These limitations will be discussed in detail in section

C of this chapter.

The first assumption made is that the bubble oscillations are

spherical and that the velocity of the gas in the bubble Is only a

function of a radial coordinate and time. Fanelli et. al. [41] have

shown that diffusion of gas in and out of the bubble is only important

at low ambient pressures and hence the assumption of no mass transport

across the bubble wall is appropriate. This study is only concerned

with bubble oscillations in water at or near room temperature. Since

the vapor pressure of water at room temperature is small compared to

that of the gas in the bubble, it is neglected in our derivation. The

final assumption is that the gas in the bubble is an ideal gas.

The momentum conservation equation can be written as follows (see

for example Aris 124])
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Until recently the polytropic approximation was thought to be quite

accurate over a wide range of driving pressures, frequencies, and bubble

radii that are of interest. However, Crum and Prosperetti [19] have

shown that the polytropic approximation can give quite different results

when the driving frequency is in the vicinity of one of the harmonics of

the resonance frequency of the bubble. It is this difficulty that led

Prosperetti to search for a better expression for the internal pressure,

which is the subject of the next section.
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reference [18]. Even though equation (28) looks quite different from

(26), substitution of

H = (P - P.)/p. (32)

into (28) with C held constant simplifies (28) to (26). Thus, these two

equations are actuaily quite similar.

To this point, only the fundamental equations for radial

oscillations have been discussed and not the problem of how to model the

internal pressure. For some time now the internal pressure has been

approximated by an expression involving a polytropic exponent of the

form given by Zwick [40]

Pi = Po(Ro/R)3K.

Here K is the polytropic exponent and P is the internal pressure of theo

bubble at equilibrium defined by

Po - P + 20/Ro, (34)

where R is the equilibrium radius of the bubble ( note that equation0

(30) is of this form as well ). Using this approximation for Pi' it is

straightforward to solve equation (25) numerically using a fourth order

Runge-Kutta method to a high degree of precision. There are of course

other numerical methods to solve this type of second order nonlinear

ordinary differential equation, but the Runge-Kutta method is probably

the most widely used and suffices here.

.. o ... .-. ..- • .. . ........ ... . ...........................•."."."."-"-..-.-.......-.."-.........-...-.....-..."-.......'.'.-.>.>...-''-.['.i.'i-.i
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by the condition on the normal stresses

Pi(R~t) - P(R,t) + 2o/R + 4RI/R. (27)

It is easy to show that as c approaches infinity, equation (26)

simplifies to the Rayleigh-Plesset equation (25).

There are numerous equations equivalent to or similar to equation

(26) in the literature [30,32,35,37]. Prosperetti [38] has discussed

this fact and argues in favor of equation (26) for reasons of better

numerical convergence. For this reason equation (26) is used as one of

the fundamental equations for this study.

Another equation which is very popular in the literature is that by

Gilmore [30]; however, the form used here is given by Lauterborn and

Suchla (18] as

RI R( H~H~1 (28)

where H is the free enthalpy, which for water is given by

H n A {[/n[P(R) + BI -)/n (P. + B)(n-l)/n. (29)n- 1 PO

The pressure at the bubble wall P(R) and the speed of sound c are given

by

P(R) - P0 +-( R R (30)

and

C = [C2 + (n-1)H) . (31)

Typical values of the constants in these equations are given in

- ***.*'~1;



time, the solution of (21) is of the form

=Ark + Br-k" (23)

2The boundary conditions imply that A - 0, k = 1, and B = -RR2 . Thus,

equation (23) becomes

. . .(24)

r

Now substituting equations (24) and (20) into (22) yields the Rayleigh-

Plesset equation

R3.2 ZI[ Pst )~ 2a 41 1R (25)Ri + ffR Pg(R,t) -P t_ _-Li'
R. +2 pjg\ s R R

There are many equations in the literature describing spherical

bubble oscillations [37]. Probably the best-known of these equations is

the Rayleigh-Plesset equation (25). One of the limitations of this

equation is the assumption of an incompressible liquid. This implies

that the speed of sound in the liquid must be infinite. Prosperetti

[381 has shown that following the procedure used by Keller and Miksis

(39] the following equation of motion for the radial bubble oscillations

can be obtained

[ 1 - .]RR + R3"2 [I - c]=(fI + R] P(R,t) - Ps(t+R/c) + dP(R,t) (26)

Here P(r,t) is the pressure on the external side of the bubble wall.

The pressure P(R,t) is related to the internal bubble pressure Pi(r,t)

* . .. *% % %*. l.9.* -.. " ' m ."" "" . ."' ....-.. -".. . . ." . ."."" "" '", " ¢
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3 + .(V )2 + h = 0. (18)
t 2

Setting the right hand side of equation (8) equal to zero implies that

0approaches zero as r approaches infinity. The other boundary

conditions on equations (17) and (18) are

o .~ u RI (19)
at jr-R(t)

and

P (R,t) - P(R,t) + a + 4uRI/R, (20)

where P is the pressure in the bubble, P the pressure on the liquidg

side of the interface, and o the surface tension of the liquid.

Equations (17) and (18) together with the boundary conditions (19) and

(20) have been the subject of considerable theoretical work [30-37).

The equations above can be simplified by assuming in the continuity

equation that the speed of sound c is infinite, implying that the

density P is constant. These assumptions reduce equation (17) to

Laplace's equation

724 a 0 (21)

and equation (18) to

S +(VO)2 + = - P , (22)

where P5  is the variable part of the pressure in the liquid. Since

these equations are only dependent on the radial space coordinate and

.,-m% . .% -. . .. - .-. - . . . . . , .'o ~ o .-. oo ..- *-..-.- .- o. .. . . q ° R .
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where

D -t -T + U. v (13)

Here, pi is the viscosity of the liquid and p is the density of the

liquid, both assumed to be constant. For our purposes the term in

equation (12) involving the viscosity is small, and together with

equation (9) we can write equation (12) as

au +~ UL _lp14

5at 3r par

Considered here are bubble oscillations where the internal

temperature remains low enough so that evaporation and condensation at

the interface can be neglected. This assumption allows us to treat the

liquid as isothermal and an equation of state involving the pressure and

density can be assumed, which leads to the following expressions

involving the molar enthalpy h and the speed of sound c [281

pdh - dP and c2dp =dP. (15)

Assuming a velocity potential such that

U=V and ua- (16)

the continuity equation (11) becomes

V + -2 r] = 0.(17)
+c (at D r5J

Performing one integration results in the Bernoulli integral
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This famous equation can be very useful as a starting point in deriving

acoustic cavitation theories.

Next, the acoustic cavitation equations are derived by starting

from first principles - namely the conservation equations. Since

spherically symmetric oscillations are dealt with exclusively, the

velocity in spherical coordinates is given by

I
U - u r , where u - Jul. (9)

There are numerous texts in fluid mechanics and transport phenomena, but

several advanced texts that are particularly useful are those by

Batchelor [23], Aris [241, Bird, Stewart, and Lightfoot [25], and Landau

and Lifshitz [26]. Some intermediate texts that are useful are those by

Lu [27], John [28], and Bertin and Smith (29].

The continuity equation or conservation of mass equation can be

written as

57 + V • (pu) - 0. (10)

Using equation (9) for U this becomes

+ u + Ear rauj - 0, (11)

where r is the radial coordinate measured from the center of the bubble.

The equation of motion or conservation of linear momentum equation known

as the Navier-Stokes equation can be written as

DU ~(2

P u = -VP + V2U, (12)
Dt
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u = R2R/r2. (3)

Substituting equation (3) into (2) and integrating results in the

kinetic energy given by

K = 2wpR 3j2 (4)

The power J can be defined by

J = F • u, (5)

where F is the force which equals pressure times area and u is the

velocity of the fluid. Since the force and velocity are both radially

directed and antiparallel, the power at infinity becomes

J lim P (41rr2 u} (6)
r-+ao( j( I

Substituting equation (3) for u and recalling that the pressure at

• infinity is P0 we get

J = -P 4vR 2 R. (7)
0

The time derivative of the kinetic energy (4) is given by

J - 27rp(3R 2 3 + 2R3 1). (8)

Equating the power (7) with the time derivative of the kinetic energy

(8) results in the Rayleigh equation

RRi + 2 a (1)/P32

.. .. r- '-S '-. ," ".,%, ,% * . , . -- .:-', ...- '. - * i " " - " 
"

" " . .. " - " '" " "' " '



Chapter 1

Theoretical development

A. The acoustic cavitation equations

Before discussing the derivation of the acoustic cavitation

equations, let us first recall the method of obtaining the Rayleigh

equation [3]

RR + -R k2 -p /P.()
2 0

Here, R, P 0, and p denote the bubble radius, pressure at infinity, and

density of the liquid respectively. Dots denote differentiation with

respect to time. It is assumed that the liquid is inviscid,

incompressible, and has no surface tension; also the internal pressure

is assumed to be zero.

Following the method of Batchelor [23], the time rate of change of

kinetic energy of the fluid is assumed to be equal to the power

developed at infinity. The kinetic energy of the fluid is defined by

K - fR p47r 2U2 dr, (2)

where u is the magnitude of the fluid velocity. The continuity equation

together with the above assumptions imply that the magnitude of the

velocity can be written as

6
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*The temperature proftis will prove very helpful in determining what

type of damage could be caused by therapeutic and diagnostic ultrasound

instruments.

* The results in chapter 4 are separated from those in chapter 3

because they come from a completely different approach to understanding

how the model behaves under certain initial conditions. The system of

0 equations describing the bubble motion is viewed as a dynamical system.

In analyzing the dynamical system some of the recent techniques such as

those by Ott [20], Huberman and Crutchfield [21], and Grebogi, Ott, and

Yorke [22] are employed. This analysis will show that the type of

damping used in the equations dramatically alters the results of these

techniques.

Finally, in chapter 5 some general conclusions are drawn from the

information compiled and suggestions are made as to what direction new

research should follow. Ideas for both new experimental work, not

discussed in previous chapters, and improvements in the theoretical

model will be presented.
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*fundamental equations of acoustic cavitation, the internal pressure is

then considered. The method of Prosperetti 1 101 will be employed in

developing the theory used to solve for the internal pressure. Chapter

* 1 concludes with a brief error analysis for all the terms discarded in

the conservation equations, which are used to solve for the internal

pressure.

Chapter 2 deals with the numerical solution of the system of

acoustic cavitation equations that is derived in chapter 1. The first

step is to find the dimensionless form of all the equations that will be

used in computer programs. Next, the numerical techniques used to solve

this coupled system of nonlinear ordinary and partial differential

equations along with the finite difference representation of the

equations are described in detail. A brief error analysis for the

numerical methods used concludes this chapter.

Chapter 3 contains results not previously known and comparisons

between the new results and those of previous theories. In particular,

radius verses time curves for several models and frequency response

curves such as those by Cramer [171 and Lauterborn and Suchla [18] are

compared to the new theory. A good test to determine how well the

theory estimates the damping is to compare theoretical levitation number

curves with the experimental ones obtained by Crum and Prosperetti [19].

Chapter 3 concludes with a discussion of the internal thermodynamics of

bubbles. Both temperature profiles and pressure curves are presented

( as a function of radius or time for a variety of initial conditions.

4
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U (y-l) KLT- (46)

Using the boundary conditions (36) and evaluating equation (46) at r - R

gives the following ordinary differential equation for

= -y-I)K(T) Y P  "(47

With the approximation of uniform pressure, equation (47) contains

all of the information present in the continuity equation. Having

already simplified two of the three original partial differential

equations, we turn our attention once again to the energy equation.

Using the ideal gas assumption, equation (40) becomes

(y-)P(l T U T] - p = v * (KVT), (48)

where U and dP/dt are defined by equations (46) and (47) respectively.

* The boundary conditions for equation (48) are continuity of temperature

and heat fluxes across the bubble wall. If the liquid is cold enough so

that the vapor pressure of the liquid is small compared to that of the

gas ( an assumption which holds at room temperature ), one can assume

that the temperature boundary condition is

T(r-R,t) = T. (49)

This assumption greatly simplifies the solution of equation (48) and

will be discussed at length in section C of this chapter.

During the collapse phase of the bubble motion, the gas temperature

S. . . . . .. .' • - . - . . - "-"" . ft-. '- o - . " ,- r . f f." t" f." . . - , ." ," - . ' t
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* can be exceedingly high. For this reason one must take into account the

variation of the thermal conductivity K(T) for the gas in the bubble.

Since the temperature of the gas is a function of both position and

* time, so is the conductivity. This presents a problem on the right hand

side of equation (48). The standard technique for dealing with this

difficulty is to define a new variable T as an integral of the

conductivity over appropriate limits such as

= J K(x)dx. (50)

Another standard change of variables to simplify equation (48) is

to define a fixed boundary rather than a varying one by introducing the

new radial coordinate

y = r / R(t). (51)

Using equations (46), (50), and (51) along with some algebraic

manipulations one can write equation (48) as
0

2- ( L - - = 2V T (52)t PeN ;y y Y Y R

where the Laplacian is with respect to y and D(P,t) is defined by

Dp K(T) =y-(K(T)T

which is the form of the thermal diffusivity for an ideal gas. The

boundary conditions for T are given by

T(y=l,t) = 0. (54)

The substitutions (50) and (51) are also made in equations (46) and

- - -.. . -,. .L .. = . - =-- . ...' ' : . - .-- -- , ,."-'_ .. .,.. .--. .-.. ...-.. . . ... ... '.-,-;::,,.;: -.-,:.,:'-



20

* (47). The new forms of these two equations add nothing to the theory

and will be omitted here. They can be found in chapter 2, section A.

All of the equations necessary to solve for the bubble's radius as

0 a function of time using the new model for the internal pressure have

now been derived. Because of the techniques employed, one also gets

P(t) and T(r,t) as well as R(t). The temperature information will prove

to be very important in some practical problems discussed later.

The method of solution of these equations is simple in principle.

The Rayleigh-Plesset equation (25) or an appropriate equation containing

the compressibility terms (26) is coupled to the energy equation (52),

the pressure equation (47), and U - dR/dt. One can solve this system of

differential equations for the radius, pressure, velocity, and
9

temperature as a function of time by using numerical methods. The exact

method of solution is discussed in detail in chapter 2 section B.

0
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*C. Limitations of the exact formulation

In numerical modeling of physical problems, there is usually a

compromise between the degree of accuracy desired and the amount of

computer power available to do the analysis. As the accuracy of the

equations is increased by adding smaller and smaller physical effects,

it sometimes happens that a set of equations is arrived at that is too

0 complicated to solve. Without the aforementioned approximations for the

internal pressure of a cavitation bubble, the new model would have this

problem. However, enough information has been included in the equations

to give considerable improvement over previous models for the range of

parameter values which are of interest. As one ventures out of this

parameter range, one might hope, but should not expect the new theory to

agree very closely with experimental values.

The focus of this study is to show an improved performance for the

fundamental equations given in section A of this chapter. Since all of

these equations assume radial oscillations, it is assumed that this is

the case for the treatment of the internal pressure. Prosperetti (42]

gives conditions favorable for non-spherical oscillations and the

parameter values used exclude this type of behavior. Using a Levitation

cell like the one used by Crum [43], one can easily detect the onset of

non-spherical oscillations. This device is used for experimental

measurements and one can determine if appreciable non-spherical

oscillations are occurring which might cause the data to deviate from

those predicted by the theory. One can conclude that any differences
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between theoretical and experimental values must be due to some other

approximations we have made.

In the derivation of the fundamental equations in section A of this

chapter it was assumed that the bubble wall velocity is equal to the

liquid velocity at r - R. Prosperetti [44] has shown that this is valid

only if little or no mass transfer takes place across the interface.
S

The error due to this effect is of the order of the ratio of the density

of the gas in the bubble to the density of the surrounding liquid. A

typical value for this ratio is 0.001 or less.

Previously, the momentum equation (35) was shown to imply that

P, = Pi(t). This required the assumption that all of the terms in the

momentum equation contribute to but a small spatial pressure difference

in the bubble. Prosperetti [10] gives a short account for each term in

equation (35). The overriding factor in keeping AP/P small for the

terms on the left hand side of the equation is the mach number M. As

long as M < 0.1, all of the terms on the left hand side give rise to a

small value of AP/P. The viscous stress term on the right hand side of

equation (35) can be written as [29]

V - T 2 = i{2L [r 2 r (55)

where

U =Rr/R. (56)

Substitution of (56) into (55) gives

V T = 2wR (57)
• *.= R
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Prosperetti 110] has shown that the contribution of equation (57) to the

pressure gradient in the bubble is approximately 21zI/PR. Assuming that

the viscosity of air at room temperature is approximately 1.8X10-4

Poise, a bubble radius of 50 microns, and a pressure of 1 atmosphere,

one obtains a value for AP/P of approximately 0.001.

The small value of the viscosity of air also allows us to neglect

the viscous heating term in the the energy equation (40). The form of

this term is given in reference [25] as

rr~r i/R.(58)

The internal gas has been modeled as an ideal gas in several places

in the theory. This seems reasonable for the temperature and pressure

ranges that are of interest. This choice is easy to justify since the

largest deviations from room temperature and standard pressure are

toward higher values as the bubble collapses. Callen [451 shows that at

higher temperatures air behaves more like that of an ideal gas. Because

of their complexity, more exact equations of state would not be easy to

incorporate into the theory.

Finally we need to discuss the error introduced when the boundary

condition (49) is used for the energy equation (48). As long as the

vapor pressure of the liquid is small compared to that of the gas

pressure, one can assume that very little vaporization and condensation

takes place over one cycle. This restriction implies that there is very

little heat exchanged on the boundary in the form of latent heat. The

. .. . . . . . . . . . .- Ad
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other process by which heat is exchanged on the boundary is by

conduction across the interface. Prosperetti [101 has shown that if T ,

Ts, T., and K are the center temperature, surface temperature, ambient

liquid temperature, and the thermal conductivity, then if the heat

fluxes in each region across the interface are set equal we getI 1I
TS - T% KgcpPg

T'T~~~~ (59)
Tc - Ts  [KlCplOlJi

where 1 and g denote the liquid and gas regions respectively. A typical

value for the right hand side of (59) is 0.001. This implies that T iss

approximately equal to T. as was assumed in the boundary condition (49).

When the liquid temperature is high enough so that evaporation and

condensation are important, one must be careful in applying this

approximation. Prosperetti [10] gives a thorough discussion of this

problem. For the liquid temperatures that are of interest, however,

this does not present a problem.

Bec.ise of the complexity of the conservation equations and the

many approximations that have been made, one might ask if it is really

worth all the trouble to solve for Pi in this manner. It will become

evident in chapter 3 that the extra work involved here pays handsome

dividends in terms of a theoretical model which more closely

approximates experimental observations. In chapter 3 the theories will

be compared to each other as well as to experimental results.



Chapter 2

Numerical solution of the equations

A. Dimensionless form of the equations

Perhaps the first step in solving a system of differential

equations numerically is finding a dimensionless form of the equations

[46]. In many cases a dimensionless form of the equations is much more

stable from a numerical point of view. It is also much easier to

compare the accuracy of different numerical methods if the equations are

in a dimensionless form. Before describing the nondimensionalization

procedure, let us first recall the four equations in the new system with

the change of variables given by equations (50) and (51)

+ R Ps(t+R/c) dP(R,t)

1 - RR + -R 1 _ E]+ E] + (26)

a2 r- [La yatrI at . (52)

- +cI 2dt I

t t-yPR y ay 1) D

3 1 (IT,] ,pi (60)-R R yij,- ~

and U = dR/dt. (61)

In the definitions whic'i follow, dimensionless quantities will be

denoted with a subscript *. A suitable value for a reference length is

25
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the equilibrium radius R 0 The internal pressure at equilibrium, Po

which is related to R through equation (34), is used as the reference0

pressure. The reference time used is the reciprocal of the driving

frequency w and the reference temperature used is the ambient liquid

temperature T.. These and other derived quantities are listed below for

later reference

R = R0R, P = P0P, t=t,/w,

P. = -- PPI Ps = P oPs * , T T T, (62)

c = wRc , , T = DoPoT, , D DD .

The appropriate form of the different derivatives in our system of

equations is calculated next. The time derivatives of the radius are

= wRoR* and R = W2RoR* , (63)

where the dots over starred variables denote differentiation with

respect to the dimensionless time t,. The other derivatives necessary

to complete the non-dimensionalization process are

= Po0P,. V2 = DoPoV 2T,

3 DPo- , - DP , and (64)
5t 0o t* Ty 0o0Y

TT 
P

r=R RR*K(TOO) y=l

where several steps have been omitted, particularly in the last
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equation. An important step in obtaining the last equation is

recognizing that

dT = K(T) (65)
dT

by applying Leibniz' rule to equation (50) and taking the reciprocal of

the result. Using the substitutions given above, the new system of

equations becomes

(1 - M)RU, + 1.5(l - M/3)U, = Z[(1+M)(P, - P, - Ps(t, + R,/c,)

- W - Y1*/R*) + (66a)

__* y _D*VT2

- + x7- XyLT - Yy y=i y -DP, = R2 2 (66b)

and U*,= dR,/dt,, (66d)

where

Z P W 2a Y 4 w

S= 02R2 ' R P P
1 00 0 0

(67)

X D / (w R 
2) an d V 2T , 2 T + -y y "

In order to calculate D, it is necessary to find the temperature T from

the integral equation (50). One can easily solve for T provided K(T) is

of the form
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K(T) = 5.528T + 1165. (68)

Equation (68) was determined by a simple linear regression routine on

the experimental data given by Weast [47] (see figure 1). This linear

equation for K(T) enables one to integrate equation (50) analytically

and obtain a value for T from the resulting quadratic equation.

This concludes the nondimensionalization process for the system of

equations. The details on how to solve these equations is the subject

of the next section of this chapter.
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B. Finite difference equations

The system of dimensionless equations derived in section A of this

chapter is now sol-ed using numerical methods. Because of the

complexity of the system and the coupling between the equations, a

multistep method is used. These types of methods offer good accuracy

without being as time consuming as some of the single step algorithms

such as the Runge-Kutta method.

The algorithm used is as follows. A simple predictor-corrector

multistep method is applied to our system of equations [50]. This

technique can be illustrated by letting

dX
-- = F(X). (69)

The vector X denotes the quantities radius, velocity, pressure, and

temperature. F(X) is the functional form of the time derivatives of the

aforementioned quantities. Using finite differences one can write

equation (69) as

Xn+  . Xn + t[F(X n ) + F(Xn+ )]. (70)

However, one cannot solve this equation explicitly for Xn+l because of

the complexity of the system of equations. The predictor-corrector

scheme overcomes this problem however.

In the predictor step an approximate value for Xn+ is computed

using an Euler method [48] of the form

Xn + l = Xn + 1tF(X'). (71)
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This predicted value of X n +  is used in equation (70) to get a more

accurate value of X In actual practice this corrector step is

repeated a second time for additional accuracy. One could repeat this

process over and over, but experience has shown that two iterations is

sufficient for our needs.

If one finds certain initial conditions and parameter settings

which cause the corrector process to converge slowly, a more advanced

predictor-corrector algorithm such as the Adams-Moulton method [48] can

be used. For the conditions that are of interest, however, the simple

method suffices.

Although the techniques outlined above are straightforward in

principle, they are rather tedious to apply because of the complexity of

the system of equations. In the remainder of this section, a step by

step procedure on how to implement this method for this system of

equations is discussed. Those not interested in this detailed guide to

the solution of the equations are encouraged to skip to the flow chart

at the end of this section without loss of continuitv.

The first phase of the method is to predict new values of the

variables using the Euler equation (71). For convenience the subscript

* notation for dimensionless equations (66) is dropped. Predicted

values will be denoted with a tilda over them. The first step is finding

a predicted pressure at the n+1 time step. This requires the evaluation

th
dP/dt at the n time step by

Rn ( [ Rn (y] - ypnu (72)

_- f. i i --- i . . . " " ."... .
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Chapter 3

Computational results

A. Radius verses time curves

Of all the information obtained from the computer programs, perhaps

the simplest to understand and analyze is the radius verses time data.

This information gives a numerical picture of the bubble at each time

step. One can compare these radius-time curves for different models at

a variety of initial conditions and make some conclusions as to where

the models agree and disagree. Because some models such as the exact

formulation require large amounts of computer time, it is useful to know

when a simpler model gives results that are sufficiently accurate for

one's needs. For this reason we not only show results from the new

formulation but also include the results from other methods as well.

One can also obtain information about the phase difference between the

driving pressure and the bubble oscillations. This phase difference is

related to the damping of the system in a complicated manner. Finally

one can find the spectrum of the radius-time curves by a simple fourier

analysis of the data. This fourier analysis of the curve shows which

harmonic modes are dominant in the bubble's radiated noise signal.

In figure 5, the radius verses time curves are compared for an

equilibrium radius of 50 microns, a driving pressure amplitude of 0.4

bar, and a driving frequency of 0.4 times the linear resonance

44
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temperature of bubbles at known driving pressures and equilibrium radii.

An investigation of this nature is presently under way and the results

should be available shortly.

In closing we should mention that experience has shown that by

examining a few cycles of the numerical solution, one can easily decide

whether equation (70) is stable or unstable. For the stable solutions

at high amplitudes, one must wait for new experimental results before

deciding how well the new theory models a real cavitation bubble in this

extreme region.
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D. Applicability

In the next chapter the values given by the new equations are shown

to be more accurate than the ones given by the polytropic approximation.

This is shown by examining the predicted levitation numbers of each

method and comparing them to experimental ones obtained by Crum and

Prosperetti [191.

Unfortunately, the levitation number data is still at rather low

amplitude and one cannot tell how accurate the solutions are in high

amplitude regions. One possible experimental method to test the

validity of the numerical solution at high amplitudes is outlined below.

One could use the light-scattering technique of Hansen [51] with a very

fast photo-diode and a good low noise amplifier attached. This would

produce a signal that is related to the radius of the bubble by the

relations given by Hansen. Once properly converted to a radius verses

time signal one could compare the numerical solution at high amplitudes

to this experimental one. Work on this experiment is presently under

way and when completed it should provide a definitive test for all

nonlinear bubble oscillation equations.

Another test for large amplitude oscillations is determining the

interior bubble temperatures experimentally by observing sono-

luminescence and comparing them to the numerical values. Dissociation

of water molecules into hydroxyl free radicals and hydrogen starts

taking place at well defined temperatures [7], which should enable

experimentalists to obtain very accurate data on the interior
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insight as to how well the numerical solution approximates an exact

analytic solution to the system of equations if one were available. One

can make several tests, however, to increase one's confidence in the

method used. As a preliminary test the numerical solution for the

radius as a function of time is compared to an analytical solution which

uses the polytropic approximaLion and is valid to first order [15]. Of

course this comparison can only be made at low driving amplitudes since

the analytical solution is only accurate in the low amplitude limit.

Figure 3 shows this comparison for a 50 micron bubble driven at half its

linear resonance frequency at a pressure amplitude of 0.01 bar. The

figure indicates that the numerical solution is nearly identical to the

analytical one when driving amplitudes are small. This reassures us

that a fundamental mistake has not been made in either deriving the

system of equations or in solving them numerically.

For more moderate amplitudes, a comparison is made between the new

results and numerical solutions of the Rayleigh-Plesset equation with a

polytropic approximation, using a fourth order Runge-Kutta method. The

program used to do this calculation was first written by A. Prosperetti.

An updated version with modifications made by the author is included in

appendix B. Figure 4 shows a comparison between the two models for a 50

micron bubble driven at half its linear resonance frequency and a

pressure of 0.50 bar. For this case there is a small difference between

the two solutions, however, they are similiar enough to reassure us that

the new solution is working properly at this amplitude.

...................................................
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C. Error analysis

A formal error analysis of the complete system of equations in all

its detail would be quite difficult. One can, however, give a more

general error analysis for the basic methods used, that is, for

equations (70) and (71) and the Crank-Nicolson implicit method.

The Euler method or equation (71), which is used as the predictor

in the algorithm, has a local or truncation error of order (At) 2and a

global or cumulative error of order (At). Equation (70) is known as the

Modified Euler method or the Euler predictor-corrector method. The

truncation error of the Modified Euler method is of order (At) 3and the

2
cumulative error is of order (At) .For completeness one should also

mention the Adams-Moulton method referred to in the previous section.

This method has a truncation error of order (At) 5and a cumulative error

of order (At) 4, which is the same as a fourth order Runge-Kutta method.

The Crank-Nicolson method is embedded in equation (70). This

method is an implicit one and because of the judicious choice of the

constants multiplying the finite difference approximations, the method

2 2
has a truncation error of order (At) and (Ay) .Since this method is

always stable, one knows that errors created at each time step must

decay exponentially [48]. One of the nice features of damped driven

nonlinear oscillators is that as long as the algorithms are stable the

numerical solution is usually being forced toward the exact solution of

the equations.

The error analysis above does not, however, give any physical
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Figure 2. Flowchart for acoustic cavitation program.
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(88)

Finally the corrected values for the dimensional temperature and the

thermal diffusivity are found by replacing the tilda variables in

equations (77) and (79) with the corrected variables denoted by carets.

in order to increase the accuracy at the new time step even more,

a second correction exactly the same as the one just described is made.

It is these second corrections that are used for the values at the n+1

time step. At this point in the computer program, all of the variables

that are of interest are written out and then the variable names are

updated. The entire process is then repeated starting at equation (72).

A listing of the computer program is provided in appendix A.

Figure 2 is a flowchart for the program and provides a qualitative view

of how the system of equations is solved. The error analysis for the

numerical methods used is found in the next section of this chapter.
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and the corrected pressure derivative from equation (66c) is given by

-n+ 1
n+l= 3 -(y-1)X r -nTN -Ypn+ln+l (88)

Sn+( 8 )n+1 - U

Finally the corrected values for the dimensional temperature and the

thermal diffusivity are found by replacing the tilda variables in

equations (77) and (79) with the corrected variables denoted by carets.

S In order to increase the accuracy at the new time step even more,

a second correction exactly the same as the one just described is made.

It is these second corrections that are used for the values at the n+1

time step. At this point in the computer program, all of the variables

that are of interest are written out and then the variable names are

updated. The entire process is then repeated starting at equation (72).

A listing of the computer program is provided in appendix A.

Figure 2 is a flowchart for the program and provides a qualitative view

of how the system of equations is solved. The error analysis for the

numerical methods used is found in the next section of this chapter.

'.- ",' .r "" ".- .- ".'." .. ". ,°,,_" """,,._- " ".rlnlG,. ".-". ".- "- ".- .-."..".-."................-..-..'-....,...'-..,..-...........-."..-."-."."...-."......,..-.".-.-...
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2Ay2n1 (-1 [ (fi~ - + Y ] + l+l (11Ay-3N

AtXD. n~ AtX rY-l1 -n+l .n+1
+ 1 + 2 ) 1 + 2 n1 2  + [t i+1 (84)

AyRn1 2AyR (YpB ~ -

-n+1 n+l _-n+1 1n+l = n At +n D.P
+ Yi ]N +1 -D i  (l+AY/Yi) I = t T Ii + D n+1

9 The next step in the corrector method is finding the corrected

bubble wall velocity. Again, equation (70) is applied as before. One

must be careful, however, because the F(X n + l) term has both predicted

and corrected velocities in it. The appropriate form of equation (70),

before solving for the corrected velocity explicitly, is given by

Dn+l n +t ,n + At (
U W 2kn+t _( -3)

(tn+l + Rn+I/c) W+yfn+l + Rn+ic n+l (85)

+___ 
n+1C 

nn~l

+ Z--I+M--pn+I[ ) - P - Pst + I) +~ P U 8

After equation (85) is solved for the corrected velocity explicitly, the

corrected radius at the new time step is found by applying equation (70)

which gives

Rn+l = Rn + -(Un+n+l). (86)

Using the corrected values of temperature, velocity, and radius

one finds that the corrected pressure from equation (70) is given by

At (y-1)X_ onn

Pn+l pn + tn + 3n l  ] - (87)

• """"" :' : =' "- '" '- , :" ' 2, 2 " n" " - A""""" y:', '"", ,:'- _'-"-". -"- '-' ,''"" . -
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* variable, one starts the corrector algorithm using the method of

equation (70). The corrected variables will be denoted by a caret above

them. The corrector method begins by solving for a corrected

temperature array at the n+1 time step. This time, however, it is not a

simple matter to solve for the new values because one must use a Crank-

Nicolson method [48] to advance the temperature array in time. This is

necessary because equation (70) is accurate to second order and each of

the embedded algorithms must be at least this accurate or one has

defeated the purpose of using equation (70). The Crank-Nicolson method

is an implicit method which requires the solution of a tridiagonal

system of linear equations for the corrected temperature array. In

order to see this more clearly, the energy equation is written in a form
0

with the unknowns and their coefficients on the left hand side and all

known quantities on the right hand side. As before, the first node has

a special form given by

0

3tXDI n+l n Atilt n
I .) __ l_ -___1_ = n. + n+12n+1

1 ____ + at.1 + Bnlnl. (83)
1 A+ 2 R n+1 TI A 2in+12 '

The general expression for the remaining nodes from i 2 to N is given

by equation (84) below. To solvP 'Us tridiagonal system for the

corrected temperatures, an algorithm by Forsythe, Malcolm, and Moler

[491 was modified for speed. This algorithm is a subroutine called

TRIDG in our main computer program which is listed in appendix A.

-:-~~~~~~~~~~~~~~......,.... .....-.-.-.-....... . ...... ......... ... .. -.. . ........ . ..... . ..... .. .... ..........-.-....... ..
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* thermal diffusivity D at each node. This requires that the dimensional

temperature be found first by the method mentioned in section A of this

chapter. For each node the dimensional temperature is related to the

* dimensionless temperature by

in+l )L 1) n+l 1165T - T1+2(), (77)
iY i -K(T,,)

where
= 5.528T,/K(T). (78)

The predicted diffusivity at node i is given by

n+ -+ n+l n+ /6n+ (79)i + (ciT + 1I65/K(T )) I

We can now return to finding new values for the main variables. A

predicted value for the radius is obtained from

in+l . Rn + Atun" (80)

To find a predicted velocity, one first solves equation (66a) for dU/dt
th

and evaluates it at the n time step. After evaluating this

derivative, the predicted velocity is found from the Euler formula by

Un+l . Un + tp. (81)

The predictor section is concluded once a new value of dP/dt is found by
0 Tn+l?n+l 3 U(Y--)x N1n

p ln+n l (82)

Having found a predicted value at the new time step for each

L' .l % : "o" '-- . ,, <"-i . ' .' '., , - '--.,.-''..-'.'-.. .'-' '-"-"- < "f-i - -V'-
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• where subscripts denote the node or spatial position and superscripts

denote the time step. Using Euler's method one finds the predicted

pressure is given by

n+. - 1pn + Attn. (73)

The next step involves the temperature array in the bubble. First

one has to find the temperature derivatives with respect to time at each

node in the bubble. The r=0 node is a special case since the Laplacian

operator is different in the limit as r approaches 0 than at any nonzero

value of r [46]. The center node or i=l node is found by

n ( Tn Tn

-r n [6 2- 1x Fl + n (74)
at 1 1.y

The general equation for the remaining nodes from i=2 to N ( N+1 is the

bubble wall which was assumed to be at constant ambient temperature ) is

given by

-C In n, x__ +[ ay n 2 n  ),]n

__ n D +1 - + I y

(75)
n n n n n

+ -] i+1 O-tN T i~j T - .Y I PnRn L 2Ay Yi A- J 2Ay

Again using the Euler method one finds predicted temperatures at the new

time step n+l by

~n+l n arn

Ti at Ii, (76)

At this point it is appropriate to find predicted values of the
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*frequency. The Rayleigh-Plesset Polytropic equation is denoted by RPP,

the Rayleigh-Plesset Exact pressure formulation by RPE, and the

Compressible Exact pressure system of equations by CE. The heavy curve

* in figure 5 represents the RPE and CE methods which are practicably

identical. The compressible equation is only necessary when the driving

pressure amplitude is very large and collapse velocities are very high.

It takes only a small amount of extra computer time to use the

compressible equation in the exact formulation, so we will use the CE

method and omit from further discussion the RPE method.

Next, a comparison is made between the solutions given by the CE

and RPP methods for a variety of bubble sizes, driving pressure

amplitudes, and driving frequencies. Figure 6 shows results for an

equilibrium radius of 50 microns, a driving pressure amplitude of 0.4

bar and a driving frequency of 0.8 times the linear resonance frequency.

The CE method predicts a larger maximum value of R/R than does the RPP@0

method. In figure 7 the equilibrium radius is 50 microns, the driving

pressure amplitude is 0.6 bar, and the driving frequency is 0.8 times

the linear resonance frequency. Again the CE method predicts a larger

maximum value of R/R than does the RPP method. Note also the phase
o

difference between the two curves which is easily measurable. These

curves have very large amplitudes, however, and the limits of validity

of the equations may have been reached or exceeded. One can only wait

for new experimental data to determine just how large an amplitude can

be used before appreciable error occurs in the results.
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Next, several figures for 10 micron bubbles are examined. Figure 8

represents a 10 micron bubble with a driving pressure amplitude of 0.6

bar and a driving frequency of 0.4 times the linear resonance frequency.

Again the pattern is the same as before, with the CE method showing less

damping than the RPP method. One can also detect a difference in the

magnitude of the second harmonic resonance by inspection of the figure

( the small peaks between the larger peaks are mainly due to the second

harmonic ). Figure 9 concludes this set of results with an equilibrium

radius of 10 microns, a driving pressure of 0.6 bar, and a driving

frequency of 0.8 times the linear resonance frequency. Again one gets a

larger response in the amplitude of the pulsation because the driving

frequency is in the vicinity of the main resonance, whereas the curves

at the 0.4 frequency are near the second harmonic. In the next section

it is shown that the response due to these harmonic resonances is much

less than that at the main resonance.

These figures represent only a few of the unlimited number of

possible combinations of initial conditions. They do, however, give an

idea of the differences in the two theories presented. With careful

observation one can detect differences in the pulsation amplitude, the

phase shifts between the driving pressure and the bubble response, and

in the magnitude of each harmonic if a fourier analysis is carried out

for the curves generated.
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B. Frequency response curves

One of the best ways of showing how a bubble responds to a driving

force under a variety of initial conditions and parameter settings is

through the use of frequency response curves such as those given by

Lauterborn [18,52] an.. Cramer [171. These graphs show the nonlinear

resonance peaks which help to characterize a bubble. This information

is of interest to those examining the biological effects of ultrasound

since the onset of subharmonic frequencies is often used as an

indication of the presence of violent cavitation. Therefore, it is

important to know precisely at what fraction of the bubble's resonance

frequency that these different modes of oscillation prevail for

different driving pressure amplitudes.

In the figures that follow, results are shown for a variety of

conditions using the new theory. These results are compared to those by

Lauterborn and Cramer to determine where the two theories agree and

disagree. Figures 10-12 are frequency response curves generated by the

new theory for normalized frequencies between 0.1 and 1.0. The step

size used in the frequency domain is 0.01 times the resonance frequency

of that particular bubble. Figure 10 shows results for a 10 micron

bubble driven at 0.3, 0.5, and 0.7 bar. Figure 11 shows results for a

50 micron bubble driven at 0.2, 0.3, 0.4, and 0.5 bar. Finally figure

12 shows results for a 100 micron bubble driven from 0.1 to 0.7 bar in

0.1 bar intervals.

Each of the fourteen curves described above took approximately one
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day of cpu time on a Digital PDP 11/73 microcomputer. Of course the

curves which show a large amplitude response took longer than those with

small responses because of the difference in step sizes used in the time

and space domains. This requirement of large amounts of computer time

has somewhat limited the scope of this investigation; this point will be

addressed again in chapter 4.

In figures 13 and 14 new results are compared with those by

Lauterborn and Cramer. Figure 13 shows the frequency response curve for

a 10 micron bubble driven at 0.7 bar. The asterisks represent points

taken from the peaks of a figure by Lauterborn [52] ( the value at

f/f -1.0 is included as well ).Note that there is a shift in both
0

amplitude and frequency between the two theories. As f/f 0decreases the

two theories give results that are quite close to one another. Figure

14 shows the new frequency response curve for a 100 micron bubble driven

at 0.7 bar. Here the asterisks represent points taken from the peaks of

a figure by Cramer [17]. Again, one sees the same trend as before, with

small values of f/f 0 giving even closer results than with the 10 micron

bubble. These figures indicate that the new theory predicts less

damping in the region around the main resonance peak and some of the

subharmonic peaks as well. From the comparison to levitation number

data in the next section one is inclined to believe that this new theory

is more accurate. The definitive test, however, is experimental data

which is not yet available.

Close examination of figure 13 and Lauterborn's figure 3 [52)
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the gas inside starts to increase due to heat conduction across the

bubble wall. For small bubbles, the value of the radius where the

minimum temperature is reached is near R 0, and for large bubbles it is

near the maximum radius attained.

The figures above indicate that under the proper conditions,

cavitating bubbles can produce temperatures high enough for free radical

formation. This should cause some concern for those using ultrasonic

instruments for medical purposes. One way to avoid this problem is to

stay away from driving pressures and frequencies that cause large

pulsation amplitudes. To avoid these regions, one must first know the

size of the bubbles in the system of interest. This, however, is a

difficult problem in itself and will not be addressed further.

Next, the center temperature of a bubble is examined as a function

of time to see how long it maintains these high temperatures. Figures

22-24 show center temperature. as a function of time for 1, 10, and 100

micron bubbles driven at 0.4 and 0.8 times the linear resonance

frequency of the particular bubble. Each figure indicates that high

temperatures occur only for a short period of time while the bubble is

near its minimum size. Figure 22 shows a 1 micron bubble driven at 1.4

bar, figure 23 a 10 micron bubble driven at 0.6 bar, and figure 24 a 100

micron bubble driven at 0.45 bar. The pulsation amplitude for the 10

micron bubble is much smaller than either the I or 100 micron bubble.

Thus, the maximum temperature attained by the 10 micron bubble is much

less than in either of the other two bubbles.
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volume and time, using the temperature profiles and an appropriate

ionization probability function as the integrand.

Figures 19-21 are temperature profiles for 1, 10, and 100 micron

bubbles at different stages of oscillation. The minimum and maximum

value of the radius for each bubble during one cycle is chosen as the

point where the temperature profiles are taken. The driving frequency

for each figure is 0.4 times the linear resonance frequency of the

bubble. The temperatures shown are normalized with respect to the

ambient temperature of 293 degrees kelvin. Figure 19 shows a 1 micron

bubble driven at 2.1 bar. Note that when the radius is a minimum, the

center temperature is approximately 3.2 times the equilibrium

temperature. Figure 20 shows a 10 micron bubble driven at 0.9 bar.

Here the maximum temperature attained is approximately 4.9 times the

equilibrium temperature. Finally, figure 21 shows a 100 micron bubble

driven at 0.8 bar. For this case the maximum temperature attained is

approximately 8.1 times the equilibrium value.

In each of these figures the maximum value of R/R 0is approximately

2.0. Thus, the small bubbles behave much more isothermally than do the

large ones. Since the bubble wall moves slowly at large values of RR0

the interior temperature does not drop to the level that might be

expected at the maximum value of the radius. Instead, a minimum

temperature is reached when the radius of the bubble is somewhere

between its equilibrium value and maximum value during the expansion

cycle. As the bubble approaches its maximum size, the temperature of



~~\*'~..z.7 i .- -

67

D. Thermodynamics of the bubble interior

As has been mentioned previously, the internal pressure and

temperature of a bubble are of particular interest to those studying the

physiological effects of acoustic cavitation. There are several

mechanisms by which a cavitating bubble can damage its surroundings.

The best known of these mechanisms is that of destruction by the bubble

wall Itself. This area has been thoroughly studied because of

cavitation damage to propellers on ships. However, we will not address

this method of cavitation damage here. More recently, experimentalists

have found that temperatures inside the bubble can become high enough to

produce free radicals. The free radicals produced at these high

temperatures can pose a serious threat to biological systems. One

method of observing this phenomena is to look for sonoluminescence from

cavitating bubbles.

The exact formulation for the internal pressure of the bubble has

within itself a temperature array for the bubble interior. Thus, one

solves for the internal temperature of a bubble as a function of both

position and time. It is important to know how many free radicals are

produced in a bubble over one cycle for a given set of parameters. One

can estimate this number from the temperature profiles the computer

program generates. One needs to know what fraction of the bubble's

volume reaches the critical temperature for free radical formation and

how long it remains at or above this temperature. A theoretical number

of free radicals could be obtained by numerically integrating over
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as 1%. When this experiment is complete one should be able to determine

the accuracy of the new theoretical model precisely.

Figures 16-18 show results for a frequency of 22.2 kHz and pressure

amplitudes of 0.095, 0.155, and 0.190 bar respectively. In each figure

the asterisks denote experimental points from reference [19]. The curve

giving the best fit to the experimental data in each figure is the new

theoretical model. From these figures one can conclude that the new

theory is more accurate than the old polytropic exponent theory for the

parameter range investigated.



62

the acoustic force is balanced by an average buoyancy force given by

F -4 3 3
FB 3 Rog<[R(t)/Ro 3 >, (92)

where g is the acceleration due to gravity. Equating these two forces

gives

IVPAI<[R(t)/R ]3coswt> = Pg<[R(t)/R 3 >. (93)

Since pg is the hydrostatic pressure gradient, one can rearrange

equation (93) so that the right hand side is the levitation number as

defined above. Thus equation (93) becomes

<[R(t)/Ro]3 cost> Pg

ffi - = Le (94)
<[R(t)/Ro]3

>  IVPA e"

The left hand side of equation (94) can easily be evaluated for a

numerical solution to equations modeling bubble oscillations. From

this equation one can compute levitation numbers for both the CE method

and the RPP method and compare the results to the experimental

levitation numbers obtained by Crum. The experimental points are

obtained in a rather straightforward manner and the technique is

discussed in detail in reference [19]. There may be as much as a 10%

error in obtaining the levitation numbers experimentally. However, it is

assumed that the experimental data is accurate enough to determine which

theoretical model best predicts the time evolution of an oscillating

bubble when pulsation amplitudes are not too large. A more automated

experimental procedure is being devised which could give results with

.........................................................................
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C. Levitation numbers

The ratio of the hydrostatic pressure gradient on a bubble to the

acoustic pressure gradient has been referred to as the levitation number

L by Crum and Prosperetti [19]. Before using this definition with thee

new theory, let us first recall where the expression arises in the first

place.

The primary Bjerknes force or acoustic radiation pressure force on

a bubble is given by Crum [53] as

FA(r,t) = -<V(t)VP(r,t)>, (89)

where V(t) is the time dependent volume of the bubble, P(r,t) is the

space and time dependent pressure outside the bubble, and the angle

brackets denote the time average of the quantity inside. If one uses a

levitatlon cell like the one used by Crum, then the pressure P(r,t) in

the cell is of the form

P(r,t) = P. - PA(z)coswt, (90)

where PA(z) is the spatially dependent amplitude of the acoustic

standing wave in the cell. Substitution of equation (90) into (89)

gives the magnitude of the acoustic force as

FA 4 RoVPAI<[R(t)/R ] 
3coswt>, (91)

where R is the equilibrium radius of the bubble.

When the bubble remains in a fixed position in the levitation cell,

* .* Wi~'.:>~j-.~y & 1A
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* reveals missing ultraharmonic resonance peaks in figure 13. For

example, Lauterborn's figure shows a 3/2 ultraharmonic, whereas figure

13 does not. In order to be sure that these peaks are not being skipped

by too large a step size in the frequency domain, another calculation

is made with twice as many points in the frequency domain than before.

This result is presented in figure 15 for a 10 micron bubble driven at

0.7 bar along with some partial curves at 0.8 and 0.9 bar. Points taken

from ultraharmonic peaks in Lauterborn's figure are denoted by

asterisks. Again the ultraharmonic resonances are missing from our

curve at 0.7 bar, but they begin to appear as the pressure is increased.

Qualitatively, the two theories give similiar results, but there are

significant quantitative differences which can be important in certain

G
applications as mentioned previously.

Although there are good indications that the new theory is more

accurate in some parameter domains, one should wait for future

experimental results before deciding which theory best predicts the

frequency response of the bubble in these high amplitude regions.

4b
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To complete this thermodynamic look at an oscillating bubble, one

must examine the internal pressure of a bubble as a function of time.

Recall that it was previously assumed that the internal pressure is a

function of time only. It has been predicted that internal pressures of

hundreds of atmospheres may be attained during the violent collapse of a

bubble. It will be shown that under the proper conditions the new theory

predicts that internal pressures on the order of hundreds of atmospheres

are attained by bubbles with large pulsation amplitudes. Figures 25-27

were calculated under the same conditions as figures 22-24. In each

case the pressure is normalized with respect to atmospheric pressure.

Note that figure 27 shows an internal pressure higher than 300

atmospheres. These high pressures last only a short time as do the high

temperatures discussed previously.

Finally, figure 28 is presented with the radius, internal

pressure, and center temperature all on the same figure. The

equilibrium radius of the bubble is 50 microns, the driving pressure

amplitude 0.6 bar, and the driving frequency 0.4 times the linear

4resonance frequency. From this figure it is easy to see the phase

relationship between the radius, pressure, and temperature of the

bubble. The arrows on the figure indicate the positions of lowest

internal temperature during the two cycles shown. This figure supports

our earlier claim, that the minimum value of the gas temperature occurs

when the radius of the bubble is increasing between R 0and its maximum

value.
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Chapter 4

A Systematic approach to chaotic bubble motion

In recent years, the numerical investigation of nonlinear dynamical

systems has revealed many exciting features. Perhaps the most exciting

discovery of all was period-doubling bifurcation as a universal route to

chaos 111). Some other interesting discoveries are the coexistence of

attractors with complex basin structures and the strange attractors

which exhibit the property of sensitive dependence on initial

conditions. A thorough discussion of these and many other features of

nonlinear dynamical systems is found in the text by Guckenheimer and

Holmes 1541.

In 1983 a number of researchers discovered another exciting

phenomenon associated with nonlinear dynamical systems [55-57]. These

researchers have shown that a variety of dynamical systems exhibit the

property of finite period doubling sequences merging with inversely

advancing ones to form a finite number of "bubbles" on some cross

section of the parameter space. A consequence of this merging of period

doubling sequences is localized regions of stable orbits and other

localized regions of chaotic motion [12].

Probably the most thoroughly studied dynamical system is the

Duffing equation [581

X + aX + X + X3=bcos(wt). (95)
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One outstanding feature of this equation is that it exhibits all of the

properties we have mentioned above. Parlitz and Lauterborn [59] give a

more global view of the Duffing equation by emphasizing the important

role of the nonlinear resonances, which cause many of the striking

features mentioned above.

One would like to have a global view of the new acoustic cavitation

equations, similar to the one given for the Duffing equation in

reference [59]. However, because of the complexity of the system, this

is very difficult. The many parameters that can be varied in the

acoustic cavitation equations make a global analysis virtually

impossible. One can, however, learn a great deal about the system by

using the techniques described above. Both the Rayleigh-Plesset

equation employing the polytropic approximation, RPP, and the new exact

formulation, CE, are examined in this fashon.

One particularly useful technique is that of bifurcation analysis

of the solutions. In general, one follows the norm of a trajectory

( which is a solution of the equations in the phase space ( ,')) as it

changes with respect to changes in a control parameter U. For the

multi-parameter case, one holds all the parameters fixed except for the

one of current interest - in the case of interest this is the driving

pressure amplitude. One then constructs a bifurcation curve for that

parameter; that is, one plots the locus of points in the Poincare

section (60] verses the control parameter.

In simpler terms, this means one plots the value of the radius at

Wd d.
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times that are multiples of the period of the driving pressure. This

technique is used at each increment of the pressure amplitude to

complete the figure. If the bubble is oscillating with a period equal

to that of the driving pressure, one gets a single point for each value

of the pressure amplitude. If the period of the bubble's oscillations

is twice that of the driving pressure, two values of the radius are

obtained for each value of the pressure amplitude, and so on. This

type of graph is known as a "Feigenbaum tree".

In order to make a comparison between the two theories, one chooses

the same set of initial conditions or parameters. We choose a bubble

with an equilibrium radius of 50 microns and a driving frequency equal

to half of the linear resonance frequency of the bubble. Figure 29

shows the results for the RPP equation and figure 30 the results for the

CE equations. Since the damping is quite different for each model, the

range of driving pressures where interesting phenomena occur is

different as well.

The most striking difference between the two figures, however, is

that the RPP equation exhibits a period-doubling bifurcation route to

chaos, while the CE equations exhibit period bubbling and an

intermittent transition to chaos. An interesting feature of the RPP

Feigenbaum tree is the missing arms from the second bifurcation point.

The reason for the missing arms is conjectured to be due to a broken

symmetry in the mapping sequence at the second bifurcation poin' (611.

From reference [121, one can conclude that varying the driving frequency
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toward a resonance peak would introduce more structure in the figures,

particularly in figure 30. One would expect to see period doubling in

the bubbles of figure 30, and perhaps even a region of chaos in the

bubble itself.

Unfortunately, the computer time required for a "Feigenbaum tree"

using the CE equations is over one week on a Digital PDP 11/73. This

time constraint has severely limited the scope of the present

investigation. As faster microcomputers become available, this type of

analysis is sure to become more and more popular.

Although global predictions cannot be made for either of the two

theories investigated, we have learned that the damping used in each

system determines, to a large degree, the characteristics of the

oscillations. Thus, one can compare an analysis of this type to

"Feigenbaum trees" obtained experimentally, to determine which model of

the damping is more accurate. An experiment of this type is planned,

using the technique described in section D of chapter 2.
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Chapter 5

Conclusions and topics for future study

The purpose of this study was to show that an exact formulation for

the internal pressure of a cavitating bubble leads to a more applicable

solution of an equation modeling acoustic cavitation. The strongest

evidence obtained to support this claim is the reasonably close

agreement between experimental levitation numbers and the ones obtained

numerically using the new theory. The exact formulation shows the

strong second harmonic resonance peak in the levitation number curves,

whereas the polytropic approximation shows very little resonance effect

at all.

one can conclude from this study, that for small pulsation

amplitudes and driving frequencies below one fourth of the resonance

frequency of a bubble, the polytropic approximation is sufficiently

accurate and should be used when computer time is a factor. Under other

conditions, however, the new formulation should be used unless the

pulsation amplitude is large. For large pulsation amplitudes one cannot

be so positive about the new theory. Some of the approximations are no

longer valid when the pulsation amplitude of the bubble approaches twice

the equilibrium radius. One must wait for new experimental results

before saying how accurate the new theory is in this region.

It has been observed that the polytropic approximation gives a
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* value for the damping that is too large w'hen the driving frequency is

near a harmonic resonance. There are a number of ways to modify the

damping term in equations using the polytropic approximation to help

compensate for the overdamping at the resonance peaks. Some of these

methods may give results as accurate as the exact method. However, this

is not very pleasing to the theoretician interested in understanding the

physics of a cavitation bubble. Unfortunately, one must pay a high

price for this elegant theory in terms of the complexity of its

numerical solution. The exact formulation requires about an order of

magnitude more computer time than does the polytropic formulation with

an artificial damping term included.

The artificial damping techniques have some difficulties of their

own, however. There is no one corrective term of this type that works

well over a large range of equilibrium radii, driving frequencies, and

driving pressure amplitudes. This is a serious limitation when trying

to predict the global behavior of an acoustic cavitation theory.

One possible solution to this problem is to replace the polytropic

exponent and artificial damping terms with a single function for the

internal pressure. As stated previously, this function for the internal

pressure must be dependent on the equilibrium radius, the driving

( frequency, and the driving pressure amplitude. A study such as the one

here may be of great help in devising such a function. Figures have been

presented for the internal pressure at various equilibrium radii,

( driving frequencies, and driving pressure amplitudes. These figures are
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very useful when trying to find the functional dependence of the

internal pressure on the parameters mentioned.

In several of the figures presented in the previous chapters, the

new theory was pressed to the limits of its applicability. One would

like to extend the applicabiblity of the exact formulation into the

region of large pulsation amplitudes. There are essentially two

problems which must be overcome in order to extend the theory to this

region.

First, the second order numerical integrator needs to be replaced

by the fourth order Adams-Moulton method. Also, one needs to find a

more accurate method than the Crank-Nicolson method used to solve for

the internal temperature. These higher order methods would greatly

reduce the numerical error made during the collapse phase of the

bubble's cycle when the pulsation amplitude is large.

The second problem encountered is that of inapplicability of the

equations for the internal pressure when the pulsation amplitude of the

bubble is too large. Recall that in deriving these equations, it was

assumed in several places that the velocity of the bubble wall was small

compared to the speed of sound in the gas. However, this condition does

not hold when the pulsation amplitude of the bubble is very large.

Hence, one must retain some of the terms discarded in the earlier

derivation in order to maintain applicability in the large pulsation

amplitude region. This will in turn make the numerical integration more

complex and time consuming on the computer. Further investigations are
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needed to find the most useful model which takes into account all of the

difficulties mentioned above.

In previous chapters several experiments were described that would

help to advance the theory of acoustic cavitation. The importance of

these experiments cannot be overemphasized. Experimental data at large

pulsation amplitudes that is sensitive to the damping is very important

to the theory.

Lauterborn has carried out several experiments in which he examines

the acoustic emissions of a bubble field and has been able to detect the

onset of different modes of oscillation as the driving pressure is

increased. The onset of these different modes corresponds to a

bifurcation point on a "Fiegenbaum tree". An experiment of this type

could be conducted with a single bubble in a levitation cell, such as

the one used by Crum. This would give an experimental "Feigenbaum tree"

which could be used to test the theories. In chapter 4 it was seen that

the bifurcation points were very sensitive to the damping, so this is an

appropriate test for the damping models.

The laser light scattering experiment described in chapter 2 is

probably the most important experiment of all the ones mentioned. This

experiment could provide an exact radius verses time curve that would be

very useful in developing an appropriate model of the internal pressure

or damping.

Until the successful completion of some of the experiments

suggested, or perhaps some others not mentioned here, one can only



91

speculate as to the applicability of the present theory to bubbles with

large pulsation amplitudes. One can, however, say that this exact

approach to the internal pressure of a cavitating bubble gives more

accurate results in its region of applicability than does the polytropic

approximation. It is also pleasing to the physicist to have a

theoretical model that agrees with experiments without resorting to

artificial viscosities or damping terms.
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APPENDIX

A. Computer program for the exact formulation

The following FORTRAN program was used to make calculations for the

compressible exact theory, which was denoted by CE. This program

outputs the radius, internal pressure, and center temperature as a

function of time. The modifications necessary to calculate the

levitation numbers, frequency response curves, temperature profiles, and

Feigenbaum tree are not shown. However, each of these modifications is

straightforward to implement in the computer program.

The input parameters necessary to run the program are REQ, AMP,

LAMBDA, NN, NTMSTP, NCYCLE, AND IPRINT, where

REQ is the equilibrium radius of the bubble in microns,

AMP is the driving pressure amplitude in atmospheres,

LAMBDA is the fraction of the resonance frequency at which the bubble is

driven,

NN is the number of nodes ( finite difference points ) in the bubble,

NTMSTP is the number of time steps in 1 period of the driving pressure,

NCYCLE is the number of cycles of the driving pressure integrated over,

IPRINT is the fraction of the points that are output ( I/IPRINT ).
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PROGRAM CE
C
C VERSION 1.0 MARCH 5, 1985
C
C THIS PROGRAM USES A PREDICTOR-CORRECTOR METHOD TO SOLVE THE
C NONLINEAR SET OF EQUATIONS FOR RADIAL BUBBLE OSCILLATIONS.
C

C
C DEFINITION OF CONSTANTS & VARIABLES
C
C GAM = RATIO OF SPECIFIC HEATS - DIMENSIONLESS

C RHOL = DENSITY OF LIQUID - GRAMS/CC
C F = DRIVING FREQUENCY - HERTZ

C REQ - EQUILIBRIUM RADIUS OF BUBBLE - CENTIMETERS
C PINF - UNDISTURBED LIQUID PRESSURE - DYNES/CM/CM
C SIGMA = SURFACE TENSION - DYNES/CM
C AMU = LIQUID VISCOSITY - POISE

C AMP - DRIVING PRESSURE AMPLITUDE IN ATMOSPHERES
C EPS = DIMENSIONLESS PRESSURE AMPLITUDE AMP/PINF
C KINF = THERMAL CONDUCTIVITY OF AIR @ EQUILBRIUM COND. -

C ERGS/(SEC*CM*DEG.KELVIN)
C TINF = AMBIENT LIQUID TEMPERATURE - DEGREES KELVIN
C P0 = INTERNAL PRESSURE OF BUBBLE @ EQUIL. - DYNES/CM/CM
C W = RADIAL DRIVING FREQUENCY - RADIANS/SEC

C DO = THERMAL DIFFUSIVITY OF AIR @ EQUIL. - CM*CM/SEC
C NN m NUMBER OF FINITE DIFFERENCE POINTS IN BUBBLE
C NTMSTP= NUMBER OF DIMENSIONLESS TIME STEPS IN ONE PERIOD
C R = DIMENSIONLESS RADIUS
C RTL = R TILDA @ N+1 TIME STEP
C RPI = DIMENSIONLESS @ N+I TIME STEP
C RST = R STAR
C U = DIMENSIONLESS VELOCITY (BUBBLE WALL)
C UTL = U TILDA @ N+- TIME STEP
C UPR = DU/DT @ TIME STEP N
C UPI = DIMENSIONLESS VELOCITY @ N+1 TIME STEP
C UST = U STAR
C P = DIMENSIONLESS INTERIOR PRESSURE
C PTL = P TILDA @ N+1 TIME STEP
C PPR = DP/DT @ TIME STEP N
C PTLPR = DPTL/DT @ N+1 TIME STEP
C PST = P STAR
C PSTPR = P STAR PRIME
C PP1 = DIMENSIONLESS INTERIOR PRESSURE @ N+I TIME STEP
C T = DIMENSIONLESS TIME
C K = DIMENSIONAL THERMAL CONDUCTIVITY OF AIR
C VEL = VELOCITY OF SOUND IN LIQUID IN CM/SEC
C D = DIMENSIONLESS THERMAL DIFFUSIVITY OF AIR
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QNO=DSQRT( OMO)
DO 20 K=1,20
THETA=R*DSQRT( 2.*OMO/DIFF)
EX=O.0
IF(THETA.LT. 10.O)EX=DEXP(-THETA)
ST=2 .*jS IN( THETA)
CT=2 .*DCOS(THETA)
APLUS=( 1.+EX*(ST-EX) )/( 1.+EX*(EX-CT))
AMINUS=-(1.-EX*(ST+EX))/(1.+EX*(EX-CT))
Tl=(THETA+THGI*AMINUS)*THE 'A
T2-THG1*(THETA*APLUS-2.)
DEN=Tl*Tl+T2*T2
KAPPA=GAM*THETA*THETA*T1 /DEN
OMOLD=OMO
0M0=PRR2*(3.*KAPPA+(3.*KAPPA-1I *W

OMO=DSQRT( OMO)
IF(DABS(OMO/OMOLD-1.O).LT.I.D-4)GOTO 40

20 CONTINUE
GOTO 400

40 CONTINUE
AIMPHI-3 .*GAM*T2*THETA*THETA/DEN
BETTH . 5*PIQ*AIMPHI/(CRHOL*OMO*R*R)
BETAC- .5*OMO*OMO*R/VEL
BETAV=2.*AMUL/ (RHOL*R*R)
FO=OMO/6 .283185307179586
THETA=R*DSQRT(2 .*OMO/DIFF)
BETA-BETTH+BETAV+BETAC

400 CONTINUE
RETURN
END
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DDR2=H*DDER
R=RI+ .5*DR2

DR=DRI+.*5*DDR2
DDER=DER(R,DR,TT)
DR3=H*DR
DDR3 =1* DDER
R=RI+DR3
DR=DRI+DDR3
TT=T+H
DDER=DER(R,DR,TT)
DR4=H* DR
DDR4=H*DDER
RO=RI+(DR1+DR4+2 .*(DR2+DR3) )/6.
DRO=DRI+(DDR1+DDR4+2.*(DDR2+DDR3) )/6.
RETURN
END

C
DOUBLE PRECISION FUNCTION DER(R,DR,T)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 KAPPA, LAMBDA
COMMON/SET1/AMP ,KAPPA,LAMBDA
COMMON/COST/PAR,AMTH,AMEFF,PI ,PIPOL
COMI4ONIQIW,PIO
COMMON/S ET4 /THREEK ,OMW

C
C PIPOL - P INTERNAL POLYTROPIC
C PI PIPOL - THERMAL DAMPING CONTRIBUTION
C

PIPOL=1 ./R**THREEK
P I-PIPOL-AMTH*DR/R
DER-PI-W/R-AMEFF*DR/R.OMW*( 1.-AMP*DSIN(T))
DER-(PAR*DER-1 .5*DR*DR)/R
RETURN
END

C
SUBROUTINE RESNCE(R)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 KAPPA
COMMON! SET 1/AMP, KAPPA, LAMBDA
COMMON/PARAMS/GAM,DIFF,PINF,RHOL,SIGMA,VEL,AMUL
COMMON! RES! FO ,AIMPHI ,BEITH ,BETAV ,BETAC ,BETA
COMMON/Q/W,PIO
PIQ=PINF+2 .*SIGMA/R
THG1=3.*(GAM-1.)
PRR2utPINFI( RHOL*R*R)
14=2. *SIGMA/(R*PINF)
KAPPA-1 .2
OMO=PRR2*(3.*KAPPA+(3.*KAPPA-1. .)*W)
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H2=H/2.
EPS=1 .D-7
EPSB= 1 .D-8

C
Do 40 K-1,32500

C
CALL RUNGE(RO,DRO,RA,DRA,TH)

20 CONTINUE
CALL RUNGE(RO,DRO,RB,DRB,TH

2)

T=T+H2
CALL RUNGE(RB,DRB,RC,DRC,TH

2 )

T=T+H2
IF(DABS(DRC).LT.EPSB)GOTO 30

ERR-DABS( DRA/DRC-1.)
IF(ERR.LT.EPS) GO TO 30

RA=RB
DRA'-DRB
T=-T-H
H-H2
H2=H/2.
GO TO 20

30 CONTINUE
RO=RC
DRO=DRC
DDER-DER(R0 ,DRO ,T)

35 PRES=DSIN(T)
WRITECL ,38)RO,T
WRITE(2 ,38)PI,T

IF(T.GE.TMAX)GOTO 200

38 FORMAT(F12.6)
36 IF(ERR.GT.EPSB)GO TO 40

H2=H
H-2.*H2

40 CONTINUE
200 CONTINUE

RETURN
END

C
SUBROUTINE RUNGE(RI,DRI,RO,DRO,T,H)
IMPLICIT REAL*8(A-H,&'Z)
DDER-DER( RI ,DRI ,T)

DR1=H*DRI
DDRIA.H*DDER
R,.RI+.5*DR1
DR-DRI+.*5*DDR1
TT-T+H/2.
DDER-DER(R, DR,TT)
DR2=H*DR
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COMMON/PARAMS/GAM,DIFF,PINF, RHOL, SIGMA,VEL,AMUL
BETTHR=BETTH
AIMPHR=AIMPHI
BETACR=BETAC
RO=1 .0
DR0.0
H-6 .283185307179586D-2
0814=1 *-w
080=6 .283 185307 179586*FO
OM=LAMBDA*OMO
PAR=PIO/C RHOL*(OM*R)*(OM*R))
AMVIS=4 . *AjML* M/PIO
THETA.-R*DSQRT( 2.*OM/DIFF)
EX=O .0
IF(THETA.LT. 10 .0)EX=DEXP(-THETA)
ST=2 .*DSIN(THETA)
CT=2 .*DCOS(THETA)
APLUS=(l.+EX*(ST-EX))/(1.+EX*(EX-CT))
AMlNUS=(1 .-EX*(ST+EX))/(1 .+EX*(EX-CT))
Tl=(THETA+3.*(GAM-1 )*MINIJS)*THETA
T2-3.*( GAM-1 .)*(THETA*APLUS-2.)
DEN=T1*Tl+T2*T2
AIMPHN-3.**GAM*T2*THETA*THETA/ DEN
KAPPA-GAM*THETA*THETA*T 1/DEN
THREEK-3 .O*KPPA
BETACN-.*5*OM*OM*R/VEL
BETTHN- .5*PIO*AI.PHN/ (RHOL*R*R*OM)
BETTH-BETTHR
AIMPHI-AIMPHR
BETAC-BETACR
IF(OPTTH.EQ.1.0)GOTO 10

C
C NOW COMPUTE THE THERMAL DAMPING AT 0M RATHER THAN OMO
C

AIMPHI-AIMPHN
BETTH-BETTHN
BETAC-BETACN

C
10 CONTINUE

AMAC-2.**RHOL*OM*R*R*BETAC /PIO
AMT H=A IMPH I

C
C NEXT STATEMENT IS FOR NO THERMAL DAM4PING
C AMTH-O.O
C

A4E FF=AMVI S+AMAC
TMAX-6 .283185307 179586*NNNN
T=0.ODO
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PROGRAM RPP
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 KAPPA, LAMBDA, RDSK
COMMON/COST/PAR,AMTH,AMEFF,PI ,PIPOL
COMMON/SETI1/AMP ,KAPPA,LAMBDA
COMMON/SET2/NNNN
COMMON/SET3/WRK, NTM1 ,DT
COMMON/PARAMS/GAM,DIFF,PINF, RHOL,SIGMA,VEL,AMUL

C
C OPTTH'-0.0 GIVES NONRESONANCE VALUES:1.0 GIVES RESONANCE

OPTTH=O .0
C

GAM=1 .4
DIFF=O .2
PINF=1 .013D6
RHOL-1 .0
AMUL-1 .OD-2
SIGMA-72 .8
VEL-1 .481D5

C
WRITECS ,55)

55 FORMAT(' INPUT RO, LAMBDA, PA, NO. OF CYCLES')
READ(5,*)RDIM, LAMBDA,PA,NNNN

C
R-RDIM*1 .OD-4
AMP-PA
PA=PA*1 .0D6

C
CALL RESNCE(R)

C
WRITE(5,56)

56 FORMAT(lH)
C

CALL WORK(R,OPTTH)
C

STOP
END

C
SUBROUTINE WORK(R, OPTTH)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 KAPPA, LAMBDA
COMMON/SET5/DELAY ,TR1
COMMON/SET2/NNNN
COMMON/SETi /AMP ,KAPPA,LAMBDA
COMMON/SET4 /THREEK, ONW
COMMON/Q/W ,PIO
COMMON/RES/FO ,AIMPHI,BETTH,BETAV,BETAC,BETA
COMMON/COST/PAR,AMTH,AMEFF,PI ,PIPOL
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B. Computer program for the Rayleigh-Plesset polytropic equation

The following FORTRAN program was used to make calculations for the

Rayleigh-Plesset equation using the polytropic approximation. The

integration is carried out using a fourth order Runge-Kutta algorithm.

The output from this program is radius and internal pressure as a

function of time.

The input parameters necessary to run the program are RDIM,

LAMBDA, PA, NNNN, where,

RDIM is the equilibrium radius of the bubble in microns,

Lambda is the fraction of the resonance frequency at which the bubble is

driven,

PA is the driving pressure amplitude in atmospheres, and

NNNN is the number of cycles of the driving pressure amplitude

integrated over.

-. ' % - °, ' * o o 
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RETURN

END
C
C TRIDIAGONAL SYSTEM SOLVER

C
SUBROUTINE TRIDG(VEC)

DIMENSION DII(51),DI2(51),DI3(51),RHS(51),VEC(51)

COMHON/SET2/DII,DI2,DI3, RHS, NMI,N

DO 10 I-iNMi
D12( I+I )-DI2 (1+1 )-DI3 (1)*Dll (l)/DI2(I)

10 RHS(I+1)-RHS(I+1)-RHS(I)*DI1(I)/DI
2 (I)

VEC(N)=RHS(N)/D12(N)

DO 20 M=NM1,1,-l

20 VEC(M)-(RHS(M)-D13(M)*VEC(M+I))/DI
2 (M)

RETURN
END

• ..- -.- .-.
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WRITE( 1,96)R,T
WRITE(2,96)P,T
WRITE(3,96)TG(1),T

96 FORMAT(F12.5)
1000 CONTINUE
1100 CONTINUE

C
C

STOP
END

C
C SUBROUTINE TO CALCULATE RESONANCE FREQUENCY FO
C

SUBROUTINE RESNCE(R, FO)
REAL KAPPA,LAMBDA
COMMON/SETI/GAM,PINF,RHOL, SIGMA,VEL,AMUL,KINF,TINF
PIOmPINF+2.*IM/

DIFF-(GAM-1 .0)*KINF*TINF/(GAM*PIO)
DIFF-.2
PRR2-PINF/( RHOL*R*R)
W-2.*SIGMA/(R*PINF)
KAPPA-i .2
OMO.PRR2*(3 .*KAPPA+(3 .*KAPPA-1.*W
OMO-SQRT( OmO)
DO 20 K-1,20
THETA-R*SQRT(2 .*OMO/DIFF)
EX-O.O
IFCTHETA.LT.10 .0 )EX=EXP(-THETA)
ST-2 .*SIN(THETA)
CT-2 .*COS(THETA)
APLUS-(1 .+EX*(ST-EX))/( I.+EX*(EX-CT))
AMINUS-(lI.-EX*(ST+EX) )/( 1.+EX*(EX-CT))
Tl-(THETA+THG1 *AJINTS)*TETA
T2-THGI*(THETA*APLUS-2.)
DEN-Ti *T 1+T2*T2
KAPPA-GAM*THETA*THETA*T1 /DEN
OMOLD-OMO
OMO-PRR2*(3 .*KAPPA+(3 .*KAPPA-1.*W
OMO-SQRT( OMO)
IF(ABS(OMO/OMOLD-1.0).LT.l.E-4)GOTO 40

20 CONTINUE
WRITE(5,30)

30 FORMAT(' NO CONVERGENCE IN SUBROUTINE RESNCE')
GOTO 400

40 CONTINUE
FO-OMO/6 .2831853

400 CONTINUE
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C
RST2=RST*RST
DUM1,=3.O*DTDY2*CHI*DST(1I)/RST2
D12(l1)u1 .Q+DUM1
D13( 1)=-DUM1
RHS(l)-TAU(1)+.5*DT*(DTAUDT(1)+DST(1)*PSTPR)

DO 80 I-2,NN
TERM-(DTDY2*CHI/(2.O*RST2))*(GM1G*(.5*(TAUST(I+1)-TAUST(I-1))
1+Y( I)*TAUST(NN) )/PST)
Dli (I-i )=TERM-(DTDY2*CHI/( 2 .*RST2) )*DST( I)*YM( I)
D12( I)=1 .O+DTDY2*CHI*DST( I)/RST2
D13(I)-TERM-DST(I)*YP(I)*(DTDY2*CHI/(2.0*RST2))
RHS(I)-TAU(I)+.5*DT*(DTAUDT(I)+DST(I)*PSTPR)

80 CONTINUE
C

CALL TRIDG(TAUPl)
C
C OTHER CORRECTOR EQUATIONS
C

MACH-UST/C
DRIVER=PFPO*( 1 .O.EPS*SIN(T+DT+RST/DUME))
DUM1=1 .O+(DT/(2 .Q*RST*( 1.0-MACH)) )*(l1.5*UST*( 1 .- MACH/3 .O)+CAPP*

1(1 .O+MACH)*CAPM/RST)
DUM2=U+.5*DT*(UPR+CAPP*( (PST-DRIVER-CAPW/RST)*( 1 .+MACH)+
1(1.O+O.O)*RST*PSTPR/C)/(RST*(1 .0-MACH)))
UP1=DUM2/DUM1
RPl-R+.5*DT*(U+UPI)
PPI=Ps.5*DT*(PPR-3.O*GM1*CHI*TAUPI(NN)/(DY*RPI*RP1))
PP1-PPL/(1 .0+1 .5*GpAf*DT*UPI/RPI)

DO 85 ImI,NN
TGPI( I)-(SQRT( 1.0+GMIG2A*TAUP1 (I) )-BETA)/ALPHA
DPI (I)-(ALPHA*TGPI(CI)+BETA)*TGPl(CI)/PP1

85 CONTINUE
C

C UPDATE AND OUTPUT AREA
C

T-TCC+FLOAT(J)*6 .28318531/FLOAT(NTMSTP)
R-RP1
P-PP 1
U-UPl

DO 90 12.1,NN
TG(I)-TGP1(I)
TAU(I)-TAUP1(I)
D(I)-DP1(I)

90 CONTINUE
IF(MOD(J, IPRINT) .NE.O)GOTO 1000
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* RTL=R+DT*U
RTL2 uRTL*RTL
DRIVER-PFPO*( 1 .OEPS*SIN(T+R/DUME))
UPR--1 .5*U*U*(1 .-MACH/3. )+CAPP*( (P-DRIVER-(CAPW+CAPM*U)/R)

1*(1. O+MACH )+( 1. 0+0 .0 )*R*PPR/C)/R*( 1. 0-MACH) )
UTL=U+DT*UPR

* PTLPR=3.O*(GM1*CHI*(-TAUTL(NN) )/RDY-GAM*PTL*UTL)/RTL
C
C START OF FIRST CORRECTOR SECTION

C
C TRI-DIAGONAL SOLUTION FOR TAUST =TAU STAR @ N+l STEP

DUM1=3 .O*DTDY2*CHI*DTL( 1)/RTL2

D12(l)-1.0+DUJM1
D13(l1)--DUM1
RHS(lI)=-TAU( 1)+DT*(DTAUDT( I)+DTL( I)*PTLPR)/2 .0

DO 70 1-2,NN

TERM-.(DTDY2*CHI/C2.0*RTL2))*(GMlG*( .5*(TAUTL(I+1)-TAUTL(I-1))

1+Y( I)*TAUTL( NN) )IPTL)
DI1(I-1 )=-TERM-CDTDY2*CHI/(2.0*RTL2))*DTL(I)*YM(I)
D12(I1)-1 .0+DTDY2*CHI*DTL(lI)/RTL2
D13(I)-TERM-DTL(I)*YP(I)*(DTDY2*CHI/(2.O*RTL2))
RHS(I)-TAU(I)+.5*DT*(DTAUDT(I)+DTL(I)*PTLPR)

*70 CONTINUE

CALL TRIDG(TAUST)
C
C OTHER CORRECTOR EQUATIONS
C

* MACH=UTL/C
DUM1=1.0+(DT/(2.0*RTL*(1.O-MACH)))*(1.5*UTL*(1.O-MACH/3.O)+CAPP*
1(1 .O+MACH)*CAPM/RTL)
DRIVER-PFPO*( 1.O-EPS*SIN(T+DT+RTL/DUME))
DUM2=U+.5*DT*(UFR+CAFP*( (FTL-DRIVER-CAPW/RTL)*( 1.O+MACH)+

1(1 .0-10 .O)*RTL*PTLPR/C)/(R*( 1.0-MACH)))

4 UST-DUM2/DUM1
RST=R+ .5*DT*( U+UST)

PST-P+.5*DT*(PPR3.*GM*CHI*TAUST(NN)/(DY*RST*RST))
PST='PST/(1 .0+1 .5*GAM*DT*UST/RST)
PSTPR-3.0*(GMI*CHI*&-TAUST(NN))/(RST*DY)-GAM*PST*UST)/RST

DO 75 I-I,NN
TGST(I)-(SQRT(1 .O+GMIG2A*TAUST( I) )-BETA)/ALPHA

DST( I)-(ALPHA*TGST(I)+BETA)*TGST( I)/PST

75 CONTINUE
C
C SECOND CORRECTOR EQUATIONS START HERE

C

C TRI-DIAGONAL SOLUTION FOR TAUP1 NEW VALUE OF TAU @ N+1 STEP
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Y(II)=Y(II-1)+DY
YP(II)=1 .O+DY/Y( II)
YM( 11)-i .0-DY/Y( II)
TG(II)-1 .0
TAU(II)=O.0

50 CONTINUE
C

C
C USEFUL EXPREESSIONS TO SAVE COMPUTATIONAL TIME
C

DU*=*
DY2-DY*DY
DY22-DY2*2 .0
DTDY2=DT/DY2

C

6 C
C WORK AREA
C

DO 1100 Il=lNCYCLE
TCC=-(II-1)*6.283185307
TYPE *,II

* DO 1000 J-1,NTHSTP
C
C START OF PREDICTOR ROUTINE
C

R2-R*R
RDY-R*DY

* R2DY2-R2*DY2
PPR--3 .0*(GMI*CHI*TAU(NN)/RDY+GAM*P*U)/R
PTL-P+DT*PPR
DTAUDT(l1)-D( 1)*(6 .O*CHI*(TAU(2 )-TAU(1) )/R2DY2+PPR)
TAUTL(l1)-TAU( 1)+DT*DTAUDT( 1)
TGTL( 1)-(SQRT( 1 .+GM1G2A*TAUTL(1) )-BETA) /ALPHA
DTL(lI)-(ALPHA*TGTL(1I)+BETA)*TGTL( 1) /PTL
DO 60 I-2,NN

DTAUDT(l)-D(I)*((CHI/R2DY2)*(YP(I)*TAU(I+1)-2.0*TAU(l)+

2+Y(I)*TAU(NN))*(TAU(I+1)-TAU( I-i ))1DY22
4 ~TAUTL( I)-TAU( I)+DT*DTAUDT( I)

TGTL(I)-(SQRT(1 .O+GM1G2A*TAUTL(I) )-BETA)/ALPHA
DTL( 1)-C ALPHA*TGTL( I)+BETA)*TGTL( I) /PTL

60 CONTINUE
C
C REST OF PREDICTOR CALCULATIONS

MACH=U/ C



100

* C
C CALCULATION OF THE RESONANCE FREQUENCY FO
C

CALL RESNCE(REQ,FO)
C
C DERIVED CONSTANTS
C

F=FO*LAMBDA
EPS-AMP/PINF
DT=6 .2831853/FLOAT(NTMSTP)
DELAY-6 .2831853*(NCYCLE-2)

* DY-i .O/FLOAT(NN)
NP1=NN+l
NMI-NN-1
PO=PINF+2 .O*SIGMA/REQ
PFPO=PINF/PO
W=6 .2831853*F

C' C=VEL/(W*REQ)
GMI=GAM-l .0
GMlG=GM./GAM
DO=GM1 G*KINF*TINF/PO
CHI-DO/(W*REQ*REQ)
CAPP-PO/( RHOL*W*W*REQ*REQ)

* CAPW-2.O*SIGMA/(REQ*PO)
CAPM=4 .O*AJ4U*W/PQ
ALPHA=M*T INF/KINF
BETA-B/KINF
GMlG2A-2 .0*GM1G*ALPHA

C

C
C INITIAL CONDITIONS
C

R-1 .0
P-i1.0
T-0.0
U-0.0
D(0)-1.0
TG(I )=l .0
TG(NP1)-1 .0
TAU (1) -0.0
TAU(NPl)-O.O
DTAUDT(NPI )-0.0
Y(1)-O.O
Y(NP1 )-1.0

C NOTE- YP & YM @ I ARE NOT REQUIRED IN COMPUTATIONS.
DO 50 II-2,NN
D(II)-1.O
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*C DST -D STAR
C DTL - D TILDA
C DPi D ARRAY AT NEW TIME STEP
C TG -DIMENSIONLESS INTERIOR GAS TEMPERATURE ARRAY
C TGTL = TG TILDA
C TGST -TG STAR

*C TGP1 = TG @N+lTIME STEP
C TAU -DIMENSIONLESS INTERIOR GAS TEMPERATURE ARRAY
C TAUTL -TAU TILDA
C TAUST - TAU STAR
C

C
REAL KINF,M,K,LAMBDA,MACH
DIMENSION TGTL(51),TGST(S1)
DIMENSION DI1(51),DI2(51),DI3(51 ),RHS(51) ,DPI(51)
DIMENSION D(51) ,DST(51) ,DTL(51 ),Y(51) ,YM(51 ),YP(S1 ),DTAUDT(51)

c DIMENSION TG(51),TGP1(51),TAU(51).,TAUTL(51),TAUST(51),TAUP1(S1)
COMMON/SET1/GAM,PINF,RHOL,SIGMA,VEL,AMU,KINF,TINF
COMMON/SET2/DI1 ,DI2,DI3,RHS,NM1 ,NN

C

C
*C INPUT FROM TERMINAL

C
WRITE (5 ,10)

10 FORMAT(' INPUT RADIUS IN MICRONS, PA, AND LAMBDA')
READ(5 ,*)REQ,AMP,LAMBDA
WRITE(5,20)

* 20 FORMAT(' INPUT NN, NTMSTP, NCYCLE, AND IPRINT')
READ(5 ,*)NN,NTMSTP,NCYCLE, IPRINT
REQ=REQ*1 .OE-4
AMP-AMP*1 .013E6

C

(4 C

C CONSTANTS
C

M- 5.*528
B- 1165 .0
GAM-1 .4
RHOL=0.998
PINF=1 .013E6
SIGMA-72 .8
AMU-.01
TINF=293.15
KINF=TINF*M+B

( VEL-1.481E5
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